
Combination: Automated Generation of Puzzles with
Constraints

Christopher Jefferson1, Wendy Moncur2 and Karen E. Petrie3

caj@cs.st-and.ac.uk, wmoncur@abdn.ac.uk, karenpetrie@computing.dundee.ac.uk

1: School of Computer Science, University of St Andrews, UK. 2: Department of Computer
Science, University of Aberdeen, UK. 3: School of Computing, University of Dundee, UK.

Abstract. Constraint Programming offers a powerful means of solving a wide
variety of combinatorial problems. We have used this powerful paradigm to create
a successful computer game called Combination. Combination is an application
for the iPhone and iPod touch. It has been on sale internationally through the
iTunes store1 since December, 2008 and received a number of positive reviews.
In this paper we explain how all the levels of Combination were generated, checked
for correctness and rated for difficulty completely automatically through the use
of constraints. We go on to evaluate this method of creation with the use of a hu-
man evaluation. This showed that fun, immersing computer games can be created
with constraint programming.

1 Introduction

Combination is a puzzle game, loosely related to chess-based problems. The premise
of the puzzle is to place wooden pieces that emit colour rays, into a grid so that no
coloured ray hits a piece of another colour. There are three types of squares in the grid:

– Empty Squares, where pieces can be placed;
– Walls, which cannot contain pieces and block rays;
– Holes, which cannot contain pieces but do not block rays.

Each piece has a colour. A piece emits rays of this colour, and must not be hit by
a ray of any other colour. Small balls on each of the pieces show both the colour of
the piece and which direction the coloured rays will be emitted from. There are three
different possible piece configurations:

– Pieces that emit rays from the top, bottom, left and right;
– Pieces that emit rays from all 4 of the diagonals;
– Pieces that combine both of the above pieces to emit rays from 8 directions.

A level is completed when all the pieces are placed on the grid and no piece is hit by
a ray of a different colour. Figure 1 shows the instructions that players of the game are
given. Figure 2 shows an easy level of the game. Figure 3 shows this level with some

1 The game can be seen at: http://itunes.apple.com/app/combination/id300288142?mt=8

pieces placed on the grid, the level cannot be completed from this position. Figure 4
shows the solution to this level. Figure 5 shows the solution to a more complex level.

Rays are blocked both by walls, and by other pieces. For example in Figure 5 the
top right-hand piece would attack the pieces in the bottom right, but is blocked by the
piece immediately below it, of the same colour.

Fig. 1. Instructions screen Fig. 2. A level from early in the
game

Fig. 3. Partially played level

Fig. 4. Completed Level Fig. 5. Example of a level with
Blocking

Combination uses AI in two ways, fully automating the process of generating the
content of the game. Firstly, the levels are all generated automatically using a combina-
tion of Constraint Programming (CP) and local search. Secondly, the difficulty of each
level is graded using CP.

In the next section we discuss the past work in solving puzzles with CP. In the subse-
quent section we outline the CP model used and the solving techniques explored. Given
that the goal of Combination is to be a game that people enjoy playing, the subsequent
section contains a brief human based evaluation of the game, with an empirical evalua-
tion. The paper concludes by looking back at the mistakes we made when creating the
game and by outlining how successful the game has been commercially.

2 Background

A constraint satisfaction problem is a triple (X , D, C), where X is a finite set of vari-
ables. For each variable x ∈ X there is a finite set of values D(x) (its domain). The
finite set C consists of constraints on the variables. Each constraint c ∈ C is defined over
a sequence, X ′, of variables in X . A subset of the Cartesian product of the domains of
the members of X ′ gives the set of allowed combinations of values. A complete as-
signment maps every variable to a member of its domain. A complete assignment that
satisfies all constraints is a solution.

Combination is loosely based upon the puzzle Peaceably Coexisting Armies of
Queens, levels of which have been solved optimally by CP [13]. In the ‘Armies of
Queen’ problem you are required to place two equal-sized armies of black and white
queens on a chessboard so that the white queens do not attack the black queens (and
necessarily vice versa). In Combination you can have more than two colours of armies,
represented by the different coloured balls on the pieces. You can also have both rooks
and bishops (in chess terms) as well as queens. There is also no requirement that the
pieces must be in equally sized armies. In addition, we added the concept of holes and
walls to the grid as it leads to more interesting small puzzles. Due to all these changes,
there was very little we could take from the original paper in terms of CP.

Solving puzzles has long been a favourite pastime for the constraint programming
community. Back in 1978 Lauriere [6] used puzzles to come up with new constraint
mechanisms and to compare different solution methods. Puzzles that have been studied
include n-queens [4], Sudoku [10], Karuko [11] and Shikaku [12].

The main usage of CP to measure difficulty in the past has been with pure-reasoning
games. For example, when solving Sudoku puzzles, it is generally assumed players
should not try out values and then rub them out later. This means that with a sufficiently
good set of reasoning rules, all Sudoku should be solvable without search. Much of the
work in CP has been to try to improve reasoning, to avoid search [10].

Many other puzzles, including Combination, do not fall into this category. It is not
intended that users should be able to solve games without search or trial. Other games
in this category include ‘Rush Hour’2 and ‘Subway Shuffle’3. Practitioners have suc-
cessfully solved levels of such puzzles with CP, such as the Peacebly Coexisting Armies
of Queens puzzle mentioned earlier and Alien Tiles [3]. However, we are unaware of
any published literature explaining how these puzzles have been designed and the levels
graded with the use of CP.

2 http://www.thinkfun.com/rushhour/
3 http://www.subwayshuffle.com/

3 Modelling Combination

An instance of Combination is a quadruple 〈x, y,G, P 〉. G is a 2D grid with dimensions
〈x, y〉, where each grid location is labelled one of {wall, hole, empty}. P is a list of
triples 〈count, col, attack〉, which denote that there are count pieces with colour col,
which attack in the directions give by attack.

We model this as a CSP with a single 3D matrix of Booleans M [x, y, length(P)].
M [i, j, k] is true if there is a piece on the kth type at grid location i, j. The constraints
on M are:

1. The correct number of each type of piece must appear:
(
∑x

i=1

∑y
j=1 M [x, y, k]) = ck, where ck is the number of pieces of type P [k].

2. There can be no piece where there is a hole or a wall:∑k
i=1 M [i, j] = 0 for every grid location (i, j) which is either a hole or wall.

Finally, there are the constraints which ensure that no two pieces of different colours
can attack each other. These constraints are generated specially for each grid and set of
pieces, according to the following rules:

For every k1, k2 ∈ {1, . . . , z}, such that pieces k1 and k2 are different colours, and
grid locations L1 = 〈i1, j1〉, L2 = 〈i2, j2〉, such that piece k1 can attack location L2

from L1 (which implies both it is in an appropriate directions, and there are no wall
pieces along the path), then add the constraint:

M [i1, j1, k1] = 0 ∨M [i2, j2, k2] = 0 ∨

∃(i, j) on the path between L1 and L2, k ∈ {1, . . . , z}. (M [i, j, k] 6= 0)

This is implemented using the Minion built in WatchedOr Constraint. This con-
straint can be read as one of the following conditions is true.

– There is not a piece of type k1 at location L1.
– There is not a piece of type k2 at location L2.
– There is a piece on the path between L1 and L2, which blocks the attack.

It is not necessary to check the type of the piece between L1 and L2 if such a piece
exists, as separate constraints will deal with the relation between this piece, and the
pieces at L1 and L2. Note that this blocking means it is not the case that an unsolvable
Combination problem remains unsolvable if extra pieces are added.

We also choose to add some simple static symmetry breaking to our model. We
only break symmetries when some colours have identical sets of pieces, and add static
symmetry breaking constraints using the Crawford ordering [9]. We do not search for
symmetries of the grid, as we found from experience that users expected “one solution”
to ignore symmetries of the pieces, but not symmetries of the board.

4 Generating Combination Levels

We first tried generating completely random instances of the Combination problem,
but such instances were almost always either trivially solvable with many solutions,
or trivially unsolvable. To generate interesting problems we instead use a simple local
search strategy, which we combine with our CP model and method of measuring the
difficulty of levels, discussed below.

The algorithm works by first generating a random grid, and then iteratively attempt-
ing to add pieces to the problem, each time checking the newly added piece still pro-
duces a solvable puzzle. We have found that levels with only one solution tend to be
more pleasing to players, so search particularly for these. Whenever such a level is
found, it is stored in a database. For the purposes of counting one level we use symme-
try breaking on the pieces, but not on the symmetries of the grid. In addition, we search
some unsolvable levels, to see if they become solvable once more pieces are added.
To find more difficult or easier levels, we occasionally bias our local search method to
choose levels which rate high or low using our difficulty measure. This was done by
only allowing pieces to be added which either increased (if a harder level was sought)
or decreased (if an easier level was sought) the difficulty measure (as calculated by the
method in the next section).

The main limitation of this technique is that it is not appropriate for generating
a level of a particular difficulty in real time. However, we should note it was able to
generate tens of thousands of levels in a day on a Dual Core 2.4Ghz laptop, making it
appropriate for off-line problem generation.

4.1 Level Post-Processing

While our basic algorithm produces correct levels and appears to do good categorisation
of difficulty, over time we have added extra “prettyness” filtering rules, which do not
change the set of solutions to a level. In particular, removing entire lines of walls and
holes all along one edge of the grid, and changing a wall to a hole when it is impossible
for it to block a piece, for example because it is in a corner.

5 Evaluating Difficulty of Levels

We hypothesise that constraint programming is similar to the reasoning which people
do when solving problems. Therefore a good method of judging the relative difficulty
of a problem should be to look at how hard it is for a CSP solver to solve. However, this
method has one major limitation. Depending on the search ordering used, it is possible
a solution may be found almost immediately, without any significant work.

In early betas of Combination, users noticed that on easy levels, they should try to
first place the first few pieces into the top-left hand corner, as this was the search ordered
used and so was the first place the solver tried when searching. Hence, the levels were
not ordered well in terms of actual difficulty.

One alternative algorithm we tried was to use more advanced variable orderings.
With sufficiently advanced analysis of the problem it is possible to construct a variable

min max mean standard deviation
Level Four 3 29 13.8 6.4
Level Six 4 123 36.1 23.3

Table 1. Distribution of search size for two problems

min max mean standard deviation
Level Four 11 15 13.3 0.88
Level Six 28 43 36.3 3.39

Table 2. Distribution of search size for two problems, averaged over 50 solver executions

ordering completely dependant on the problem, up to symmetries of the problem. Such
variable orderings however still suffer from the problem that they occasionally find the
solutions to very hard problems by luck, rather than by good design.

To remove these biases, we used a new algorithm with solves each problem many
times. This algorithm takes the average of the size of the search tree over many solving
attempts, typically 50, each time randomising the initial ordering of the variables given
to the solver. This removes any bias always placing pieces in the same area of the grid,
and removes the chance of finding a solution early by luck.

As a concrete example we consider in depth the fourth and sixth hardest levels
in the experiment in Section 6, using the model described in Section 3. We solved
each of these instances 300 times, with differing variable orderings. Table 1 provides a
statistical analysis of the results.

If we take a single random sample from each of the two distributions in Table 1,
Level Four takes fewer search nodes than Level Six 86% of the time. This clearly does
not provide a reliable way of comparing these two problems.

Table 2 samples a different distribution, where each problem is solved 50 time and
the average taken. These new distributions model our expectations, for we would expect
averaging a normal distribution to reduce the standard deviation by a factor of

√
50 ≈ 7.

As the table clearly shows, in this new averaged distribution Level Four always takes
few nodes to solve than Level Six. Using this technique gives us a reliable way of
measuring the comparative difficulty of levels. This does not of course mean this is a
useful way of measuring how difficult a problem is for humans.

5.1 Reducing the solving time

We investigated several methods of reducing the search size when solving problems.
One of the most useful methods for reducing the size of search, and also reducing
the search time for many instances, is Singleton Arc Consistency (SAC) [1]. SAC is a
generic method of reducing search in propagating, branching constraint solvers.

We also investigated adding a selection of implied constraints to reduce search. By
far the most useful implied constraint we found was the Global Cardinality Constraint
(GCC) [8]. This constraint combines all the constraints in the Combination model of
type (1), given in Section 3, which impose that the correct number of pieces of each
type must appear.

This implied constraint detects when there are insufficent spaces left for all the
pieces which have not yet been placed. For example given the level in Figure 3, the

default model would continue search but a GCC constraint would detect there is only
one free space left for both of the two unplaced pieces, and backtrack. Users who have
reached later levels say that this is an important part of how they try to solve problems,
so it seems sensible to include it in our model.

We found that both of these improvements made substantial improvements to how
quickly hard levels could be solved. For hard levels they made only very small changes
to the ordering of difficulty of levels. For easier levels the major limitation is these
techniques lead to many easy instances being solved in a very small number of nodes.
In particular, similar to solving Sudoku with higher levels of reasoning [10], with both
SAC and GCC, many easy levels were solvable without backtrack. This made it much
harder to distinguish between these levels. We could in principle have tried to count
how often constraints were triggered and how much work they did, but we preferred to
avoid this complication.

In practice we introduced a cut-off, where both SAC and GCC were used first and
then if the number of nodes taken to solve was less than 500, they were both turned
off so a more precise complexity figure could be generated. This generated a good bal-
ance between accurately measuring the difficulty, while still allowing the most difficult
problems to be solved in a reasonable time.

6 Evaluation

In Section 5 we outlined the method we used to evaluate the difficulty of levels. We
conjectured that solving the CP once using a single ordering heuristic (hereafter refer-
eed to as the single method) is not as good for our purposes as running the CP a number
of times using different variable orderings then averaging the result (hereafter refereed
to as the multiple method). In order to show our conjecture is correct we need to prove
the following hypotheses:

H1: The multiple method evaluates the hardness for humans best.
H2: The multiple method will provide a more satisfactory user experience.

A between-subjects design was used to evaluate (i) the optimal algorithm for gen-
erating levels of appropriate difficulty, based on user performance, and (ii) user experi-
ence of the game. We recruited an opportunity sample of participants (n=18: 12 male,
6 female) via an online notice board at the local university. An incentive was offered of
entry into a prize draw for an iPod Shuffle. All participants were able-bodied, and able
to use an Apple iPod Touch without assistance. Participants were assigned at random
to one of two groups. Each group tested versions of Combination which contained the
same levels, but ordered using a different algorithm.

Group1: 6 levels evaluated for difficulty with the multiple method.
Group2: 6 levels evaluated for difficulty with the single method.

There were five stages to the study:

1. Participants gave their consent to take part after reading information about the
study, and provided brief demographic information.

2. They undertook a brief training task, by completing a tutorial which first explained
how to play the game, then gave them four practice games for them to try out.

3. Participants were then given 15 minutes to play up to six levels of the game. Each
game level was intended to increase in difficulty compared to the last one. All
participants began at level 1. For each level except the first one played, participants
identified whether the level was harder or easier than the preceding one, using a
seven-point Likert scale (1= Extremely hard to 7= Extremely easy). An eighth point
on the scale existed (0 = Impossible). This was marked when participants failed to
complete the level.

4. Participants then answered questions to establish the extent of their immersion in
the game, using a subset of the validated questionnaire developed by Jennett et
al [5]. Basic attention, temporal dissociation (losing track of time), challenge and
enjoyment were evaluated using a 5-point Likert scale. Transportation (a sense of
being removed to another place) and emotional involvement were not measured, as
these were more relevant to online gaming than to a puzzle such as Combination.

5. There was an opportunity for participants to ask further questions about the study
after completing the questionnaire.

6.1 Results

Results of the questionnaire were analysed quantitatively using independent samples
t-tests. Participants found that the level of difficulty fluctuated between games, rather
than increasing steadily. This fluctuation was more pronounced for those in Group2.
There was a significant difference in the degree of difficulty between levels 1 and 2
for Group1 (M=5.10 , SE=0.348) and Group2 (M=4.33 , SE=0.726): t(17)=0.984, p
=0.040. There was also a significant difference in the degree of difficulty between levels
5 and 6, comparing Group1 (M=1.40 , SE=0.542) and Group2 (M=2.33 , SE=1.167):
t(17)=-0.751, p=0.002. This means that there was a bigger jump in difficulty between
levels 1 to 2, and 5 to 6, for Group2 than there was for Group1.

The amount of time each participant spent completing each level is shown in Ta-
ble 3. As these tests were all done by different participants they are rather difficult to
analyse. However, what is obvious is that more people in Group1 completed more lev-
els than those in Group2. We believe that this shows that the learning curve for Group1
was better than that for Group2.

In particular the average time to solve each level for Group1 varied between 56
seconds for level 2 to 2 minutes 44 seconds for level 3, whereas Group2 clearly found
level 3 very difficult, taking an average of 6 minutes for those who could solve it, and
only 18 seconds to solve level 6.

Given these results and results discussed earlier, we believe we have strong prelim-
inary evidence to show Hypothesis 1 is true.

Overall, participants found that the game delivered an immersive experience, that
captured their attention, provided a distraction, and was challenging and enjoyable as
shown by the results in Table 4.

There was no significant difference between the degree of immersion reported by
participants in the two groups, based on quantitative analysis of answers to the question-
naire. There was no significant difference for total immersion, basic attention, temporal

Participants in Group 1
level 1 level 2 level 3 level 4 level 5 level 6

Participant 1 0:02:55.541 0:00:38.046 0:00:35.517 0:00:27.549 0:02:01.209 -
Participant 2 0:04:04.252 0:00:50.850 0:03:12.927 0:00:35.932 0:00:55.144 0:00:51.500
Participant 3 0:00:44.379 0:00:45.719 0:00:25.737 0:00:23.197 0:01:37.006 0:00:35.350
Participant 4 0:02:26.649 0:00:24.288 0:03:30.722 0:00:33.237 - -
Participant 5 0:00:18.047 0:01:08.640 0:06:55.012 0:05:38.024 - -
Participant 6 0:00:19.550 0:00:42.143 0:00:39.119 0:01:29.465 0:03:55.178 0:01:25.072
Participant 7 0:00:15.837 0:00:31.190 0:00:28.459 0:00:28.498 0:01:29.077 0:01:20.822
Participant 8 0:02:50.754 0:03:17.112 0:08:55.390 - - -
Participant 9 0:01:56.817 0:00:38.218 0:01:51.395 0:01:23.691 - -
Participant 10 - 0:00:27.240 0:00:50.064 0:01:45.261 0:01:29.980 -

Participants in Group 2
level 1 level 2 level 3 level 4 level 5 level 6

Participant 11 0:03:41.301 0:00:40.420 0:02:57.661 0:00:59.081 0:04:22.625 0:00:16.958
Participant 12 0:00:59.551 0:00:32.011 0:04:03.433 0:01:56.987 0:01:49.254 0:00:24.142
Participant 13 0:03:29.665 0:00:55.281 - - - -
Participant 14 0:02:53.815 0:00:15.639 0:03:47.949 0:00:55.988 0:00:24.820 0:00:14.838
Participant 15 0:03:00.903 0:00:37.143 0:13:34.777 - - -
Participant 16 0:02:16.738 0:02:33.981 - - - -
Participant 17 0:06:30.778 0:01:33.781 - - - -
Participant 18 - - - - - -

Table 3. The times take for all of our participants to complete each of the levels they were given.

dissociation (losing track of time) or challenge. However, the difference in enjoyment
for Group1 (M=14.1, SE= 1.21) and Group2 (M=14.56, SE=0.65) approached signif-
icance: t(17)=-0.320, p = 0.059. This result suggests that those in Group2 found that
their algorithm generated slightly more enjoyable games. Therefore we have evidence
that H2 is disproven.

6.2 Discussion

It is difficult to apply standard measures of usability efficiency, effectiveness and user
satisfaction equally in the gaming domain. Efficiency can scarcely be regarded as a

Category Mean Standard Deviation Mean as percentage of max score Max possible score
Total immersion 75.53 10.611 75.53 100
Basic attention 17.05 3.135 85.25 20

Temporal
dissociation 21.22 3.770 70.73 30
Challenge 21.05 2.953 70.17 30
Enjoyment 14.32 3.019 71.60 20

Table 4. Analysis of how the Participants completed the Questionaire.

desirable goal in game playing, as the lack of challenges arising from efficiency reduces
or eliminates user satisfaction [2]. We focussed specifically on effectiveness and user
satisfaction, as we wanted to know if the game was fun to use and created a sense of
immersion the specific, psychological experience of engaging with a computer game
[5]. The results show that the game is indeed fun to play and immersive. This is not
influenced greatly by whether the multiple method or single method is used to evaluate
level difficulty, even though the single method generates game levels that are erratic
in their difficulty level. Users apparently enjoyed this erratic behaviour - as shown by
the slightly higher enjoyment scores for the singe method. However, this was not borne
out by observations of participants. Those in Group2 were notable for their audible
expressions of frustration, and requests for hints on how to complete a level, addressed
to the researcher.

The results so far show that the game provides a simple but effective immersive
experience. It may be improved by adding a Hint feature, and a tutorial with more
complex examples as both these feature were requested by participants. The choice of
algorithm does not impact significantly on the quality of user experience. Caution is
appropriate however. This study was formative. The number of participants failed to
reach statistical significance. To confirm the results from this study, a larger field study
would be needed. Ideally, we would also gather and analyse objective physiological
measures such as heart rate [7]. However, this is beyond the scope of a small scale
formative evaluation such as the one reported on here.

7 What Went Wrong?

Both based on our evaluation, and on discussions with users and beta-testers, constraint
programming succeeded in the primary objective we set for it. All levels in the game
were automatically generated, checked correct and organised in order of difficulty by
constraint programming.

One common complaint is that for many users the game increases in difficulty too
quickly, and the later levels are too hard for all but the very best puzzle solvers. One
further, surprising result occurred when the number of levels in Combination were in-
creased from around 50 to the current 393. Originally most good players would find the
game begin to get very hard around level 40. They would however try hard to continue
through the final 10 levels. Keeping the difficulty curve the same, the same position in
the game now occurs when there are around 80 levels left. Informal discussions with
players suggest they would see the end of the game as sufficiently far off that they
abandon trying to finish.

The important conclusion to draw from this is that simply generating levels is insuf-
ficient for a complete game, it is important to investigate how users will interact with
these levels and the game as a whole. In particular we noticed in our experiments that
users appear to enjoy the difficultly level to increase and decrease. We do not believe
this changes the usefulness of our algorithm, only how we should then present levels to
the users.

8 Commercial Success

Combination was released on the iTunes store in December 20084, For £0.79, or $0.99.
Despite no advertising of any kind the full game which features 397 levels has been sold
800 times. This has raised a total income of approximately £600. Given that the game
was relatively easy for a constraint practitioner to model and hence produce levels for
and that the entire game was completed in a week of evenings, we feel that this is good
return. Based on our experiences with this game, we now think we could make further
games with very little time overhead. Further, we believe investing in advertising could
make our current game much more successful, given the reviews it has received.

There is also a free version of the game called Combination Lite which provides 16
of the levels from the full game. This has been downloaded 14,000 times. Many of the
sales of the full version have been from people who have finished the lite version and
wish to continue playing.

One of the feature of the iTunes store is the ability to review games. Internationally
(it should be noted that each country has its own iTunes store) we have received 24
reviews, of which 22 gave the game the maximum 5 starts.

Two of the recent reviews in the UK are:

“The graphics are very simple, but the gameplay is great. This is the kind of
game you can play for a minute while waiting for something. The first levels
are very simple but they get fiendishly difficult later.”

“Great game and nicely designed. I like the way you can skip ahead when
you get stuck - and I’ve been stuck quite a few times - and then go back and
complete a level. This is my favorite game for my train commute. Thanks!”

The game has also received one review in the media5 which is very positive. This
review states:

“If you’re a fan of puzzle games, you might want to check out Combination.
It offers a series of logic puzzles in the form of multi-color balls that emit
rays. You must place all the balls into a grid and work out how to place them
so that each colored ray does not hit a ball of another color. It’s a lot more
challenging than it sounds, and once you work you way through the very simple
first few levels, it gets downright diabolical. . . . For your dollar, you purchase
enough challenges to keep you busy for many hours. Should any puzzle prove
too challenging (I’m looking at you, Taxing 3), you can skip ahead to other
puzzles without penalty. At last check, the game had a total of 11 ratings, which
is a shame given that it offers as much as it does to puzzle fans and really
deserves more notice than it’s been getting.”

4 http://itunes.apple.com/app/combination/id300288142?mt=8
5 http://arstechnica.com/apple/reviews/2009/04/minireview-combination-offers-challenging-

iphone-puzzles.ars

9 Conclusion and Future Work

Combination is the first exploration of creating a computer game, in the puzzle game
genre, with the use of CP. We used CP to automatically generate all the levels of Com-
bination. We then checked all the games levels for correctness and rated their difficulty.
Our human evaluation showed that our method of solving the problem multiple times
with different ordering heuristics, is indeed a good measure of difficulty. Rather surpris-
ingly, the evaluation of the questionnaire related to this evaluation also suggested that
game players do not like the levels to be necessarily in increasing level of difficulty.
This is something we were very surprised by, that may warrant further evaluation by
the HCI community. The main point to note from the evaluation is that on the whole
participants enjoyed playing the game. This enjoyment is also echoed in the reviews the
game has received. We did make mistakes when creating this game, in particular the
later levels are possibly too difficult and there are too many off them. However, despite
these mistakes, Combination has been a qualified commercial success.

in the future, we are going to use the lessons we have learned from this game to
create further puzzle compilations. We would also like to explore the collaboration op-
portunities between HCI and CP. In particular, we are interested to see if our method of
evaluating difficulty can be used in educational software.

References

1. Bessiere, C., Debruyne, R.: Theoretical analysis of singleton arc con-
sistency and its extensions. Artif. Intell. 172, 29–41 (January 2008),
http://portal.acm.org/citation.cfm?id=1316092.1316358

2. Federoff., M.: Heuristics and usability guidelines for the creation and evaluation of fun in
video games (2002), unpublished Master of Science, Indiana University,

3. Gent, I.P., Linton, S., Smith, B.M.: Symmetry breaking in the alien tiles puzzle (2000), report
APES-22-2000,

4. Haralik, R., Elliott, G.: Increasing tree efficiency for constraint satisfaction problems. Artifi-
cial Intelligence 14, 263–313 (1980)

5. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijis, T.: Measuring and defining
the experience of immersion in games. International Journal of Human-Computer Studies
66, 641–661 (2008)

6. Lauriere, J.: A language and a program for stating and solving combinatorial problems. Ar-
tificial Intelligence 10, 29–127 (1978)

7. Mandryk, R.L., Inkpen, K.M.: Physiological indicators for the evaluation of co-located col-
laborative play. Proceedings of the ACM Conference on Computer Supported Cooperative
Work pp. 102–111 (2004)

8. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: AAAI/IAAI,
Vol. 1. pp. 209–215 (1996)

9. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Dis-
crete Appl. Math. 155(12), 1539–1548 (2007)

10. Simonis, H.: Sudoku as a constraint problem. Proceedings of the Modelling Workshop at CP
(2005)

11. Simonis, H.: Kakuro as a constraint problem. Proceedings of the Modref Workshop at CP
(2008)

12. Simonis, H.: Shikaku as a constraint problem. CSCLP 2009 (2009)
13. Smith, B.M., Petrie, K.E., Gent, I.P.: Models and symmetry breaking for peaceable armies

of queens. Proceedings of CPAIOR Springer LNCS 3011, 271–286 (2004)

